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Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given for
a correct method, provided this is shown by written working. You are therefore advised to show

all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.

1. [Maximum mark: 6]

Consider two events, 4 and B, such that P(4) =P(4'n B)=0.4 and P4 " B)=0.1.
(@) By drawing a Venn diagram, or otherwise, find P(4 U B). [3]

(b) Show that the events 4 and B are not independent. [3]
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[Maximum mark: 5]

A team of four is to be chosen from a group of four boys and four girls.
(@) Find the number of different possible teams that could be chosen. [3]

(b) Find the number of different possible teams that could be chosen, given that the team
must include at least one girl and at least one boy. [2]
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[Maximum mark: 7]

Consider the function g(x) =4cosx+1,a <x < g where a <g.
(@) Fora= —g, sketch the graph of y = g(x). Indicate clearly the maximum and minimum
values of the function. [3]
(b)  Write down the least value of a such that g has an inverse. [1
(c) For the value of a found in part (b),
(i)  write down the domain of g';

(i) find an expression for g '(x). [3]
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[Maximum mark: 7]

Consider the following system of equations where a € R.
2x+4y-z=10
x+2y+az=5
Sx+ 12y =2a.

(@) Find the value of a for which the system of equations does not have a unique solution. [2]

(b)  Find the solution of the system of equations when a =2. [5]
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[Maximum mark: 6]
1 0
The vectors a and b are definedby a =|1|, b =| —t |, where te R.
t 4¢
(@) Find and simplify an expression for a « b in terms of . [2]

(b) Hence or otherwise, find the values of ¢ for which the angle between a and b is obtuse.  [4]

L

12EP06

|




6.

-7- N18/5/MATHL/HP1/ENG/TZ0/XX

[Maximum mark: 6]

Use mathematical induction to prove that Zr(r!) =+ —1,forneZ".

r=1
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[Maximum mark: 6]
Consider the curves C, and C, defined as follows

Ci:ixy=4,x>0
C,:y’-x'=2,x>0

d
(a) Using implicit differentiation, or otherwise, find Ey for each curve in terms of x and y. [4]

Let P(a, b) be the unique point where the curves C, and C, intersect.

(b)  Show that the tangent to C, at P is perpendicular to the tangent to C, at P. [2]

L

12EP0O8

|




-9- N18/5/MATHL/HP1/ENG/TZ0/XX
[Maximum mark: 7]

Consider the equation z*+ az’+ bz*+ cz+d =0, where a,b,c,deR and zeC.
Two of the roots of the equation are log,6 and ix/3 and the sum of all the roots is 3 + log,3.
Show that 6a +d +12=0.
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Do not write solutions on this page.

Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
9. [Maximum mark: 15]

Consider a triangle OAB such that O has coordinates (0, 0, 0), A has coordinates
(0,1,2) and B has coordinates (2,0, b — 1) where < 0.

(@) Find, in terms of b, a Cartesian equation of the plane II containing this triangle. [5]
Let M be the midpoint of the line segment [OB].

(b) Find, in terms of b, the equation of the line L which passes through M and is
perpendicular to the plane I1. [3]

(c) Show that L does not intersect the y-axis for any negative value of 5. [7]
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Do not write solutions on this page.

10. [Maximum mark: 19]

X X

sin2x + %COSZX+C,CER. [5]

2
(@) Use integration by parts to show that Ie" cos2xdx = ©

X X X

(b) Hence, show that J'ex cos *xdx = e?sin 2x + le_OCOS 2x + % +c,ceR. [3]

The function 1 is defined by f(x) =ecos’x, where 0 <x <5. The curve y = f(x) is shown
on the following graph which has local maximum points at A and C and touches the x-axis

at B and D.
/\y

(c) Find the x-coordinates of A and of C, giving your answers in the form a + arctan b,
where a,beR. [6]

(d) Find the area enclosed by the curve and the x-axis between B and D, as shaded on
the diagram. [5]
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Do not write solutions on this page.

1. [Maximum mark: 16]

(a) Find the roots of z**= 1 which satisfy the condition 0 < arg(z) < g expressing your

answers in the form re”, where r, 0 e R". [5]
(b) Let S be the sum of the roots found in part (a).

(i) Show that ReS=1ImS§S.

(ii) By writing Zas| 2o Ej, find the value of cos— in the form M,
12 \4 6 12 :

where a, b and c are integers to be determined.

(ii) Hence, or otherwise, show that S =

@+Jﬂ@+¢3@+n. [11]
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